Not all courses described in the Course and Program Catalogue are offered each year. For a list of course offerings in 2024-2025, please consult the class search website.
The following conventions are used for course numbering:
- 010-099 represent non-degree level courses
- 100-699 represent undergraduate degree level courses
- 700-999 represent graduate degree level courses
Course search
14 Results
ENVE 201.3: Principles of Environmental Engineering
Population, economic growth, industrialization, urbanization and energy-use, as causes of environmental pollution. Mass and energy balance for environmental engineering systems under steady state and unsteady state conditions. Contaminant partitioning and transport in air, water and solids. Application of environmental principles (technical and non-technical) to: water resource management, water and wastewater treatment, air pollution control, solid waste management, environmental impact assessment, and environmental ethics. Thermal pollution, noise pollution, greenhouse effect, acid precipitation, ozone depletion, air toxics, and ground-level ozone and fine particulates (photochemical smog). Sustainable development and life cycle analysis. Review of the principles of environmental quality objectives, standards and guidelines.
Weekly hours:
3 Lecture hours and 2 Practicum/Lab hours and 1 Tutorial hours
Restriction(s): Restricted to students in the Environmental Engineering program. Approval of the department must be obtained for students not in the Environmental Engineering program.
Prerequisite(s): EN First Year Common Core or EN Two Year Common Core.
ENVE 212.3: Physical Principles of Plant Biosystems
An introduction to physical concepts governing movement and storage of nutrients, energy, and water within the plant biosystem (soil-plant-atmosphere). Topics include: physical properties of soil, biogeochemical cycling, plant physiology, and water and energy transport within the plant biosystem. Subject material will provide the foundation for future engineering courses involving biosystems.
Weekly hours:
3 Lecture hours and 3 Practicum/Lab hours
Prerequisite(s) or Corequisite(s): BIOL 120.
Note: Students with credit for EVSC 220, SLSC 240, BLE 212, or ABE 212 will not receive credit for this course.
ENVE 381.3: Sustainability and Environmental Assessment
A study of the principles of sustainable development and the process of environmental impact assessment. Case studies are used to illustrate the EIA process in engineering design of environmental control measures. Concepts of integrated resource management are analyzed as the basis for making linkages between protecting the environment, economic development and public participation.
Prerequisite(s): 60 credit units from this institution.
Note: Students with credit for BLE 481 or BLE 481 or ENVE 481 will not receive credit for this course.
ENVE 395.3: Environmental Engineering Design Project
A design course in which the principles of design are learned by application to a suitable environmental engineering project. The course requires that the students work in groups to achieve the desired outcome. Group interaction and performance is monitored throughout. Guest lectures from various industrial and other representatives will be provided to enhance the student's design experience. This course is to be cross-listed with CE 295.3 Design Project, which is a required course for all students in the Civil Engineering and Geological Engineering programs. The cross-listed course will be coordinated by a single faculty member from the Civil, Geological and Environmental Engineering (CGEE) department, and will be supported by faculty advisors from the CGEE department. The courses will share lectures and practicum sessions. The primary distinction will be that ENVE 395 students will work on design problems that are specific to the field of Environmental Engineering.
Weekly hours:
3 Lecture hours
Prerequisite(s): CE 202, ENVE 201, RCM 200, GE 213 (taken)
ENVE 414.3: Water and Wastewater Engineering
This course introduces additional topics in the discipline of sanitary/environmental engineering. It builds upon previously introduced principles of chemistry, fluid mechanics and fundamentals of sanitary/environmental engineering. Topics covered include design of lime soda ash softening in drinking water treatment; design of biological wastewater treatment systems; and sludge and residual solids management in water and wastewater treatment. An introduction to tertiary wastewater treatment and wastewater disposal issues is also presented.
Prerequisite(s): CE 327.
Note: Students with credit for CE 414 will not receive credit for this course.
ENVE 432.3: Land Management and Reclamation
Current soil degradation issues, land management and reclamation practices are studied for common land uses; e.g., agriculture, construction, urbanization, forestry, mining, and recreation. Major topics include wind and water erosion, soil compaction, soil carbon change, acidification, sodic soils, salinization, and desertification.
Weekly hours:
3 Lecture hours and 1.5 Tutorial hours
Prerequisite(s): ENVE 212 or (BIOL 120 and CHEM 115 and GEOL 121) or (BIOL 120 and 6 credit units from CHEM 100-299, GEOG 100-299, EVSC 210).
Note: Students with credit for ABE 432 or BLE 432 will not receive credit for this course.
ENVE 478.3: Contaminated Site Remediation Engineering
This course focuses on the fundamentals and applications of remediation engineering for contaminated sites. The course demonstrates equilibrium phase partitioning, mass transfer and degradation of contaminants in subsurface environments. Engineering design and quantitative analyses of remediation processes and performance for existing remediation technologies will be presented. Finally, the course will explore the engineering aspects of alternative and emerging site remediation technologies.
Weekly hours:
3 Lecture hours
Prerequisite(s): (GEOL 121 or CHEM 115) and 42 credit units from EN Senior Courses
ENVE 482.3: Solid Waste Engineering and Management
The design of systems for processing and utilization of by-products generated by the bioresource industries, including primary agriculture, food processing, and forestry. Pollution problems caused by these industries are examined and opportunities for recycling and utilization of by-products are identified. Emphasis is on land as opposed to surface water as a receptor of organic by-products. A comprehensive strategy is developed for approaching pollution control and by-product utilization problems. Students are expected to integrate sociological, regulatory, economic, biochemical and technological considerations in exploring waste treatment and utilization options. Students work in teams to conduct an industrial waste survey and a feasibility study of waste reduction and enhanced waste utilization for a specific local industry, farm, or processing plant. Natural treatment/processing systems are emphasized and topics may include site assessment, composting, cogeneration, and wetlands treatment.
Prerequisite(s) or Corequisite(s): EN Three Year Common Core and 18 credit units from EN Senior Courses.
Note:Students with credit for ABE 482 or BLE 482 will not receive credit for this course.
ENVE 495.6: Capstone Design Project
A final design course in which advanced principles of design are learned by application to a suitable environmental engineering project. Projects normally involve interaction with industrial sponsors who act as clients. The course requires that students work in groups. Group interaction and performance is monitored throughout. Guest lectures from various industrial and regulatory representatives will be provided to enhance the students' design experience.
Weekly hours:
6 Practicum/Lab hours
Prerequisite(s): ENVE 201 and RCM 200 and GE 348.
Prerequisite(s) or Corequisite(s): CE 320.
ENVE 498.3: Special Topics
Offered occasionally to cover, in depth, topics that are not thoroughly covered in regularly offered courses.
ENVE 898.3: Special Topics
Two 3 credit courses can be taken independently. Topics will be selected according to the student's specific area of interest.
Weekly hours:
3 Lecture hours
ENVE 990.0: Seminar
A seminar is held each week throughout the regular session during which students, staff, and invited speakers discuss current research topics. Students are required to attend and to present at least one seminar each academic term.
ENVE 994.0: Research – Thesis
Students writing a Master's thesis must register in this course.
ENVE 996.0: Research – Dissertation
Students writing a Ph.D. thesis must register in this course.